Artificial intelligence techniques for trustworthy information systems

Marco Montali unibz

Free University of Bozen-Bolzano

EUTRAIL workshop, 13/12/2024, unibz

Faculty of engineering at unibz

5 master programmes, 3 applied masters, 3 PhD programmes

850+ students, 40+ professors, 50+ researchers, 5 bachelor programmes,

mechanics wood technology *****

KRDB research centre for Knowledgebased Artificial Intelligence Part of the CS and AI institute

- Strong focus on research excellence (foundational and applied) and collaborative projects
- Wide network of collaborations on Al (technical, CS-oriented approach)
- Some key facts: Diego Calvanese PC Chair of IJCAI 2026, Chiara Ghidini vice-president of AIxIA, Marco Montali General Chair of AIxIA 2024
- AI-lab (funded by FESR-EFRE with 1M €): AI-based services for the territory

Trustworthiness as "technical robustness" Al systems operating under "provable guarantees"

- and automated reasoning, knowledge graphs, semantic technologies
- (BPM/process mining), temporal reasoning, automated planning and scheduling
- of learning, simulation, and reasoning

Initial focus: Al for data management, knowledge representation

Then expanded towards dynamic systems: Al for process science

 Recently: increasing focus on nesy integration, explainability, predictive/prescriptive techniques with guarantees, integration

23ND INTERNATIONAL CONFERENCE OF

artificial intelligence

In all its flavours: symbolic, connectionist, nesy

artificial intelligence

0

0

artificial intelligence

Q

Q.

0

Process science

Declarative processes

2

Al for declarative processes

3

Ongoing research

Process science

"All happens through processes, and all happens in processes"

Home > Process Science > Article

Process science: the interdisciplinary study of socio-technical change

Editorial | Open access | Published: 25 July 2024 Volume 1, article number 1, (2024) Cite this article

Download PDF 坐

You have full access to this open access article

Jan vom Brocke M, Wil M. P. van der Aalst, Nicholas Berente, Boudewijn van Dongen, Thomas Grisold, Waldemar Kremser, Jan Mendling, Brian T. Pentland, Maximilian Roeglinger, Michael Rosemann & Barbara Weber

3 2755 Accesses 2 Citations 2 Altmetric Explore all metrics \rightarrow

Abstract

Process science is the interdisciplinary study of socio-technical processes. Socio-technical processes involve coherent series of changes over time, entailing actions and events that include humans and digital technologies. The ubiquitous availability of digital trace data, combined with advanced data analytics capabilities, offer new and unprecedented opportunities to study such processes through multiple data sources. Process science is concerned with describing, explaining, and intervening in socio-technical

Process Science

Aims and scope \rightarrow

Submit manuscript \rightarrow

"All happens through processes, and all happens in processes"

Home > Process Science > Article

Process science: the interdisciplinary study of socio-technical change

Editorial | Open access | Published: 25 July 2024 Volume 1, article number 1, (2024) Cite this article

Process science is the interdisciplinary study of socio-technical processes. Socio-technical processes involve coherent series of changes over time, entailing actions and events that include humans and digital technologies. The ubiquitous availability of digital trace data, combined with advanced data analytics capabilities, offer new and unprecedented opportunities to study such processes through multiple data

sources.

Abstract

Process science is the interdisciplinary study of socio-technical processes. Socio-technical processes involve coherent series of changes over time, entailing actions and events that include humans and digital technologies. The ubiquitous availability of digital trace data, combined with advanced data analytics capabilities, offer new and unprecedented opportunities to study such processes through multiple data sources. Process science is concerned with describing, explaining, and intervening in socio-technical

"All happens through processes, and all happens in processes"

Business process management

Home > Process Science > Article

Process science: the interdisciplinary study of socio-technical change

Editorial | Open access | Published: 25 July 2024 Volume 1, article number 1, (2024) Cite this article

Process science is the interdisciplinary study of socio-technical processes. Socio-technical processes

involve coherent series of changes over time, entailing actions and events that include humans and digital

technologies The ubiquitous availability of digital trace data, combined with advanced data analytics capabilities, offer new and unprecedented opportunities to study such processes through multiple data

sources.

.....

Abstract

Process science is the interdisciplinary study of socio-technical processes. Socio-technical processes involve coherent series of changes over time, entailing actions and events that include humans and digital technologies. The ubiquitous availability of digital trace data, combined with advanced data analytics capabilities, offer new and unprecedented opportunities to study such processes through multiple data sources. Process science is concerned with describing, explaining, and intervening in socio-technical

Process mining

Business process

organisation

Business process

Business process

A business process is a collection of related events, activities and decisions, that involve a number of *actors and objects*, and that collectively lead to an outcome that is of value to an organization or its customers

customers

		EALITY					p dis
		enac		dat	a		
knov wo	vledge rkers			event	logs		
Case id	Event id	Properties					
		Timestamp	Activity	Resource	Cost	•••	
l	35654423	30-12-2010:11.02	register request	Pete	50	•••	
	35654424	31-12-2010:10.06	examine thoroughly	Sue	400	• • •	
	25651126	05-01-2011:15.12 06 01 2011:11 18	dooido	NIIKe	200	•••	CO
	35654420	00-01-2011.11.10 $07_01_2011 \cdot 1/122/11$	reject request	Dara Pete	200	•••	
	55057727	07 01-2011.14.24	rejectrequest		200	•••	С
2	35654483	30-12-2010:11.32	register request	Mike	50	•••	
	35654485	30-12-2010:12.12	check ticket	Mike	100	•••	
	25651107	20.12.2010.14.16	······································	Data	100		

Model-driven process management 1. process discovery via conceptual modelling

Model-driven process management 1. process discovery via conceptual modelling

Model-driven process management 2. share and understand

Model-driven process management 3. use models

Add Comment G

👤 Demo Demo 🗙

Invoice Receipt 50 Assign Approver Set follow-up date 🌲 in 3 days 🗙 Add groups Invoice Receipt My Group Tasks L Demo Demo 8 minutes ago Form History Diagram Description A in 3 days Invoice Number: Involce Amount: Accounting Who should approve this invoice? GPFE-23232323 30€ V Creditor John's Tasks 50 Assign Approver Great Pizza for Everyone Inc. Invoice Receipt Amount L Demo Demo 8 minutes ago Mary's Tasks 30€ A in 3 days

quantitative analysis/simulation

execution support

Joan Doe Simulation ~
rrent run rent state)
.25
indi un
le time
Bh
more
e consumption
'n
more
cks (2)
rtment
more
cel Export

Difference between models and reality 1/3: process execution data are essential

actual traces

Difference between models and reality 1/3: process execution data are essential

actual traces

Real example... **Credits: SEE-lab, Technion**

Patients Flow, HomeHospital January 2005

Difference between models and reality 2/3: reality is often more complex than expected

Simplicity cannot be obtained by sweeping complexity under the carpet

Difference between models and reality 3/3: domain experts find their own way

Difference between models and reality 3/3: domain experts find their own way

enact/

monito

knowledge workers

event logs

Event logs

	-	_			
Case id	Activity	Timestamp	Transaction type	Resource	•••
• • •	•••	• • •	• • •	•••	
253	ER Triage	04–13-2021	complete	Nurse 1	•••
		11:33:50			
255	Release A	04–13-2021	complete	Physician	• • •
		11:35:05		02	
259	Lactic Acid	04–13-2021	complete	Nurse 4	• • •
		11:38:55			
254	Leucocytes	04–13-2021	complete	Nurse 5	• • •
		11:41:23			
256	Lactic Acid	04–13-2021	complete	Nurse 4	• • •
		11:52:35			
257	ER Triage	04–13-2021	complete	Nurse 7	• • •
		11:53:16			
258	ER	04–13-2021	complete	Nurse 8	• • •
	Registration	11:54:47			
253	Admission	04–13-2021	complete	Physician	• • •
	NC	11:55:26		02	
259	Admission IC	04–13-2021	complete	Physician	• • •
		11:58:30		03	
260	CRP	04–13-2021	complete	Nurse 07	• • •
		12:01:12			
261	Release B	04–13-2021	complete	Physician	• • •
		12:02:00		03	
253	IV Liquid	04–13-2021	complete	Nurse 2	• • •

https://ceur-ws.org/Vol-1859/bpmds-08-pap

<u>e</u>	r.	p	<u>d</u>	f
		_		

Event logs

subject/instance what ______Case Activity id

253	ER Triage	04
255	Release A	04
		11:
250	Lactic Acid	<u>∩</u> ⊿
209	Lactic Acia	
		TT
254	Leucocytes	04
		11
256	Lactic Acid	04-
		11
257	FD Triago	$\Omega \Lambda$
237	ER Mage	11
		TT
258	ER	04
	Registration	11
253	Admission	04-
	NC	11
0=0		
259	Admission IC	04
		11
260	CRP	04
		12
261	Release B	04
201	ICICASE D	
		12
253	IV Liquid	04

https://ceur-ws.org/Vol-1859/bpmds-08-pap

<u>e</u>	r.	p	<u>d</u>	f
		_		

https://ceur-ws.org/Vol-1859/bpmds-08-pap

<u>e</u>	r.	p	<u>d</u>	f
		_		

From traces to temporal graphs **Research frontier...**

data-driven process management

Process mining: "data science in action"

Wil van der Aalst

Process Mining

Data Science in Action Second Edition

Wil M. P. van der Aalst Josep Carmona (Eds.)

448

NBIP

Deringer

Process Mining Handbook

A manifesto is a "public declaration of principles and intentions" by a group of people. This manifesto is written by members and supporters of the IEEE Task Force on Process Mining. The goal of this task force is to promote the research, development, education, implementation, evolution, and understanding of process mining.

Process mining is a relatively young research discipline that sits between computational intelligence and data mining on the one hand, and process modeling and analysis on the other hand. The idea of process mining is to discover, monitor and improve real processes (i.e., not assumed processes) by extracting knowledge from event logs readily available in today's (information) systems. Process mining includes (automated) process discover (i.e., extracting process models from an event log), conformance checking (i.e., monitoring deviations by comparing model and log), social network/ organizational mining, automated construction of simulation models

model extension, model repair, case prediction, and history-based recommendations.

-	mt	or	+0.	K
		-		8
		-		

Process Mining – State of the Art	3
Guiding Principles	6
Challenges	10
Epilogue	13
Glossary	14

Process mining techniques are able to extract knowledge from event logs commonly available in today's information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application omains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes.

https://www.tf-pm.org

The process mining framework Original picture by Wil van der Aalst

The process mining framework Original picture by Wil van der Aalst

Play in: automated discovery Model learning from trace data - typically, with positive examples only

Case	Activity	Timestamp	Resourc
432	register travel request (a)	18-3-2014:9.15	John
432	get support from local manager (b)	18-3-2014:9.25	Mary
432	check budget by finance (d)	19-3-2014:8.55	John
432	decide (e)	19-3-2014:9.36	Sue
432	accept request (g)	19-3-2014:9.48	Mary
•••			,, ,

start

ue lary

Play out: synthetic event log generation Synthesis of meaningful event data from a model

Case	Activity	Timestamp	Resource
432	register travel request (a)	18-3-2014:9.15	John
432	get support from local manager (b)	18-3-2014:9.25	Mary
432	check budget by finance (d)	19-3-2014:8.55	John
432	decide (e)	19-3-2014:9.36	Sue
432	accept request (g)	19-3-2014:9.48	Mary

Replay: enhancement Data augmentation of the model

8

abdf⁴⁰ acdf⁵ acdecdf⁵ abdebdf⁸ abdecdf²

b

e

abdf⁴⁰ acdf⁵ acdecdf⁵ abdebdf⁸ abdecdf²

Replay: conformance checking Behaviour recognition, deviation analysis

e a acdf abcdf abcdecbdf abcfd acdecfd

Al-augmentation along the BPM lifecycle Credits: Marlon Dumas

How do my processes look like? Where are the bottlenecks, wastes, compliance violations, positive and negative deviances?

(descriptive) process mining Automated process discovery **Conformance checking** Performance mining Variant analysis

Al-augmentation along the BPM lifecycle **Credits: Marlon Dumas**

When should I adapt my process and how? Where can I add most value to a process?

What can I do to improve my process? When should I trigger an intervention? Which process changes should I implement?

prescriptive process improvement

How will my process look like in the future, if I leave it as-is, or make a change? What is the impact of automation or change?

predictive process mining

How do my processes look like? Where are the bottlenecks, wastes, compliance violations, positive and negative deviances?

(descriptive) process mining

augmented BPM

Adaptive self-driving processes **Conversational process** optimizers

> Prescriptive process monitoring Automated process improvement

> > Predictive process monitoring What-if digital process twins

> > > Automated process discovery **Conformance checking** Performance mining Variant analysis

Al-augmented Business Process Management Systems: A Research Manifesto

Authors: 🚯 Marlon Dumas, 🙎 Fabiana Fournier, 🧝 Lior Limonad, 💭 Andrea Marrella, 🗶 Marco Montali, 🙎 Rehse, 🚱 Rafael Accorsi, 🍙 Diego Calvanese, 🙎 Giuseppe De Giacomo, 🙎 Dirk Fahland, + 4

ACM Transactions on Management Information Systems, Volume 14, Issue 1 • Article No.: 11, Pages 1 - 19 https://doi.org/10.1145/3576047

Published: 31 January 2023 Publication History

77 N 2,234 5

Abstract

Al-augmented Business Process Management Systems (ABPMSs) are an emerging class of process-aware information systems, empowered by trustworthy AI technology. An ABPMS enhances the execution of business processes with the aim of making these processes more adaptable, proactive, explainable, and context-sensitive. This manifesto presents a vision for ABPMSs and discusses research challenges that need to be surmounted to realize this vision. To this end, we define the concept of ABPMS, we outline the lifecycle of processes within an

Al-augmented Business Process Management Systems: A Research Manifesto

Authors: 💽 Marlon Dumas, 🙈 Fabiana Fournier, 🧝 Lior Limonad, 🧝 Andrea Marrella, 🔍 Marco Montali, 🔎 Rehse, Rafael Accorsi, Calvanese, Salvanese, Sa

ACM Transactions on Management Information Systems, Volume 14, Issue 1 • Article No.: 11, Pages 1 - 19 https://doi.org/10.1145/3576047

> **An ABPMS is a process-aware** information system that relies on trustworthy Al technology to reason and act upon data, within a set of <u>restrictions</u>, with the aim to continuously adapt and improve a set of business processes with respect to one or more performance indicators.

Al-augmented Business Process Management Systems: A Research Manifesto

Fabiana Fournier, 🧝 Authors: Marlon Dumas, Rehse, Rafael Accorsi, Diego Calvanese,

ACM Transactions on Manage https://doi.org/10.1145/35760

explainability

conversational actionability

Process science

Declarative processes

2

What is a process? A possibly infinite set of finite traces

What is a process? A possibly infinite set of finite traces

Framing in Al-augmented process science

Key question: how to capture this set?

Generalisation

Flexibility is everywhere

Simplicity cannot be obtained by sweeping complexity under the carpet

Compact specification

Reality

procedural specification

process

procedural specification

process

declarative specification

procedural specification

process

declarative specification

procedural specification

process

declarative specification

The "Declare" approach [Pesic et al, EDOC 2007] [___,Springer Book 2010] [___,TWEB 2011]

A set of temporal constraints

templates grounded on the activities of interest

- execution trace
- Compositional approach by conjunction

Constraints have to be all satisfied over a complete

Which constraints are useful?

Patterns in Property Specifications for Finite-State Verification*

Matthew B. Dwyer Kansas State University **Department of Computing** and Information Sciences Manhattan, KS 66506-2302 $+1\ 785\ 532\ 6350$ dwyer@cis.ksu.edu

University of Massachusetts **Department of Mathematics** and Statistics Amherst, MA 01003-4515 +1 413 545 4251 avrunin@math.umass.edu

ABSTRACT

Model checkers and other finite-state verification tools We believe that the recent availability of tool support allow developers to detect certain kinds of errors aufor finite-state verification provides an opportunity to tomatically. Nevertheless, the transition of this techovercome some of these barriers. Finite-state verificanology from research to practice has been slow. While tion refers to a set of techniques for proving properties there are a number of potential causes for reluctance to of finite-state models of computer systems. Properties adopt such formal methods, we believe that a primary are typically specified with temporal logics or regular cause is that practitioners are unfamiliar with specifiexpressions, while systems are specified as finite-state cation processes, notations, and strategies. In a recent transition systems of some kind. Tool support is availpaper, we proposed a pattern-based approach to the able for a variety of verification techniques including, presentation, codification and reuse of property specififor example, techniques based on model checking [19], cations for finite-state verification. Since then, we have bisimulation [4], language containment [14], flow analcarried out a survey of available specifications, collectysis [10], and inequality necessary conditions [1]. In ing over 500 examples of property specifications. We contrast to mechanical theorem proving, which often found that most are instances of our proposed patterns. requires guidance by an expert, most finite-state verifi-Furthermore, we have updated our pattern system to cation techniques can be fully automated, relieving the accommodate new patterns and variations of existing user of the need to understand the inner workings of the patterns encountered in this survey. This paper reports verification process. Finite-state verification techniques the results of the survey and the current status of our are especially critical in the development of concurrent pattern system. anatoma where non deterministic helpsion makes test

George S. Avrunin

James C. Corbett University of Hawai'i Department of Information and Computer Science Honolulu, HI 96822 +1 808 956 6107corbett@hawaii.edu

cess support for formal methods.

cancel order

pick item

pay

close order

cancel order

precedence

pick item order

> To close an order, you must first pick an item

pay

Process science

Declarative processes

2

Al for declarative processes

Representation question How to characterise the set of traces in the specification?

Declare specification

Which constraints are useful?

Patterns in Property Specifications for Finite-State Verification*

Matthew B. Dwyer Kansas State University **Department of Computing** and Information Sciences Manhattan, KS 66506-2302 $+1\ 785\ 532\ 6350$ dwyer@cis.ksu.edu

University of Massachusetts **Department of Mathematics** and Statistics Amherst, MA 01003-4515 +1 413 545 4251 avrunin@math.umass.edu

ABSTRACT

Model checkers and other finite-state verification tools We believe that the recent availability of tool support allow developers to detect certain kinds of errors aufor finite-state verification provides an opportunity to tomatically. Nevertheless, the transition of this techovercome some of these barriers. Finite-state verificanology from research to practice has been slow. While tion refers to a set of techniques for proving properties there are a number of potential causes for reluctance to of finite-state models of computer systems. Properties adopt such formal methods, we believe that a primary are typically specified with temporal logics or regular cause is that practitioners are unfamiliar with specifiexpressions, while systems are specified as finite-state cation processes, notations, and strategies. In a recent transition systems of some kind. Tool support is availpaper, we proposed a pattern-based approach to the able for a variety of verification techniques including, presentation, codification and reuse of property specififor example, techniques based on model checking [19], cations for finite-state verification. Since then, we have bisimulation [4], language containment [14], flow analcarried out a survey of available specifications, collectysis [10], and inequality necessary conditions [1]. In ing over 500 examples of property specifications. We contrast to mechanical theorem proving, which often found that most are instances of our proposed patterns. requires guidance by an expert, most finite-state verifi-Furthermore, we have updated our pattern system to cation techniques can be fully automated, relieving the accommodate new patterns and variations of existing user of the need to understand the inner workings of the patterns encountered in this survey. This paper reports verification process. Finite-state verification techniques the results of the survey and the current status of our are especially critical in the development of concurrent pattern system. anatoma where non deterministic helpsion makes test

George S. Avrunin

James C. Corbett University of Hawai'i Department of Information and Computer Science Honolulu, HI 96822 +1 808 956 6107corbett@hawaii.edu

cess support for formal methods.

Which constraints are useful? ty Specifications Verification* Patterns in Linear Jomes C. Corbett vrunir ersty of Hawai'i Temporal Logic ach **U** formation ne. Now interpreted over finite traces! [Pnueli, SFSC197] IDegiacomovardi, IJCAI2013J (1) D1...... add unamiliar with spec roce is, notations, and strategies. In a paper, we proposed a pattern-based approach to presentation, codification and reuse of property specifilor bisim. an cations for finite-state verification. Since then, we have carried out a survey of available specifications, collectysis [10], and m ing over 500 examples of property specifications. We contrast to mechan found that most are instances of our proposed patterns. requires guidance by an english Furthermore, we have updated our pattern system to cation techniques can be fully and the the accommodate new patterns and variations of existing the user of the need to understand the inner patterns encountered in this survey. This paper reports verification process. Finite-state verification to inques the results of the survey and the current status of our are especially critical in the development of concurrent

anatoma where non deterministic behavior makes too

pattern system.

Which constraints are useful?

Patterns in Linear Temporal Logic [Pnueli, SFSC197]

roce is, notations, and strategies. In a paper, we proposed a pattern-based approach to presentation, codification and reuse of property specifications for finite-state verification. Since then, we have carried out a survey of available specifications, collecting over 500 examples of property specifications. We found that most are instances of our proposed patterns. Furthermore, we have updated our pattern system to accommodate new patterns and variations of existing patterns encountered in this survey. This paper reports the results of the survey and the current status of our pattern system.

and any angle of the second se

$\Box(\texttt{close} \rightarrow \texttt{pay})$

Atomic propositions are activities A Declare specification is the conjunction of its constraint formulae

Each state contains a single activity

> $\Box(\texttt{close} \rightarrow \texttt{pay})$ ∧(¬close)‴item $\wedge \square (cancel \rightarrow \neg \square pay)$

Atomic proposit A Declare speci

Traces of a Declare specification formally defined:

pick item

ch state contains a single activity

straint formulae

 $\{t \in \Sigma^* \mid t \models \varphi\}$

A 99

 $\Box(\texttt{close} \rightarrow \texttt{pay})$ (¬close)*W*item $(cancel \rightarrow \neg \Box pay)$

An unconventional use of logics (In process science)

From ... Temporal logics for specifying (un)desired properties of a dynamic system

.... to

Temporal logics for specifying the dynamic system itself

Al for Declare/LTLf-based processes An incomplete picture...

Al for Declare/LTLf-based processes An incomplete picture...

strategies

Synthesis from data

ASP

Inductive logic programming

SAT

rule mining

SMT

Conformance checking

At runtime

Abductive logic program

Temporal logics

Automata

Thanks to finite traces: good old finite-state automata

From...

Vision realised!

Thanks to finite traces: good old finite-state automata

conformance monitoring

interest

- Goal: Detect and report fine-grained feedback and deviations
- Complementary to predictive monitoring!

Track a running process execution to check conformance with properties of

(Anticipatory) conformance monitoring

interest

- Goal: Detect and report fine-grained feedback and deviations also <u>considering the possible future continuations</u>
- Complementary to predictive monitoring!

Track a running process execution to check conformance with properties of

Fine-grained feedback

- Refined analysis of the "truth value" of a property
- looking into (all) possible futures

Fine-grained feedback

- Refined analysis of the "truth value" of a property
- looking into (all) possible futures

Consider a partial trace **t**, and an LTLf formula φ ...

RV-LTL(f) truth values [BauerEtAl,InfCom2010] [___,BPM2011] [___,TOSEM2022]

- φ permanently satisfied by t
- **t** satisfies φ
- no matter how **t** continues, φ stays satisfied

φ currently satisfied by t

- **t** satisfies φ
- there is a continuation of **t** that violates φ

RV-LTL(f) truth values [BauerEtAl,InfCom2010] [___,BPM2011] [___,TOSEM2022]

- φ permanently violated by t
- t violates φ
- no matter how **t** continues, φ stays violated

φ currently violated by t

- **t** violates φ
- there is a continuation of **t** that satisfies φ

From...

trace 1

close order

trace 2

pick item

Fully implemented in the RuM toolkit rulemining.org

<>pay -> <>acc				
1	temp.sat	temp.viol	perm.sat	
!(<>get /\ <>cancel)				
1	temp.sat			
Contextual absence: get task forbidden while <>				
1	temp.sat		perm.sat	
Reactive compensation: permanent violation of				
1	temp.sat			t
Conflict:	presence	of a confl	ict for !(<>	>get /\ <>ca
1	temp.viol			temp.sat p
Preference: preference of !(<>get /\ <>cancel) ov				
1	temp.sat			
sta	be	pa	ac	ical ige
	gin	× e	ŝ	nce
20	80	8/2:	22	
1/1	23	3/20	1/20	3/2:
970	20	119	19	
8	19	14:	5	19
:59	4	16:	19:	16
:59	14:0	59:	17:	53
:99	8:1	147	147	46:
9	47	-	_	147
				_

Process Science

Declarative processes

2

3

Ongoing research

Data-LTLf: constrain the evolution of data variables over time (modulo theories) G(x' > x)

$$\kappa) \wedge \mathsf{F}(x=2)$$

Current developments Data-awareness on multiple objects and relations ___,DL2017][___,BPM2019][___,IJCAI2022]

FO-LTLf and **temporal description logics** to constrain events and objects over time (temporal constraints over data models)

Current developments Uncertainty

In the specification

In the event data

probabilistic events _____,BPM2022][____,EAAI2023]

LTLf over fuzzy event logs [_____,BPM2024]

Current developments Conversational systems for declarative process mining [____, BPMDemo2023]

C-4PM

You can ask me multiple things, for example:

- Describe the process
- List the activities in the process
- Can you give me some conformant traces?
- Is it possible that ER Triage occurs before IV Liquids?
- Can activity IV Antibiotics be performed before activity Admission NC?
- In which cases ER Triage occurs right after ER Registration?
- Will IV Antibiotics eventually happen twice?

The specification allows for that behavior. Here are some cases in which, If AdmissionNC happens at least once then IVAntibiotics has to happen or happened before AdmissionNC.

ER Registration, Leucocytes, CRP, LacticAcid, ER Triage, ER Sepsis Triage, IV Liquid, IV Antibiotics, Admission NC, CRP, Leucocytes, Leucocytes, CRP, Leucocytes, CRP, CRP, Leucocytes, Leucocytes, CRP, CRP, Leucocytes, Release A

ER Registration, ER Triage, CRP, LacticAcid, Leucocytes, ER Sepsis Triage, IV Liquid, IV Antibiotics, Admission NC, CRP, CRP, Release A

Can activity IV Antibiotics be performed before activity Admission NC?

guarantees [,AAAl2025]

Starting point

- Counterfactual explanations key XAI technique (e.g., to suggest changes to input data that could alter predictions towards better outcome)
- Input data in process science: execution traces (discrete time sequences)

Observation: in a process, **not all traces make sense** • **Temporal constraints** as background knowledge that separates the possible from the impossible

Learning, explainability, reasoning - combined Counterfactual generation for explainability under temporal logical

Result: genetic algorithms for counterfactual trace generation infused with temporal reasoning to ensure that only conforming traces can be proposed

Conclusions

Connection between AI and process science

for the analysis of system dynamics

The case of declarative processes: temporal logics and automata to the rescue

Synergy between model-driven and data-driven techniques

Conclusions

Connection between AI and process science

for the analysis of system dynamics

The case of declarative processes: temporal logics and automated reasoning to the rescue

Synergy between model-driven and data-driven techniques